The formation of merging black holes with masses beyond 30 M at solar metallicity

Gravitational-wave astronomy has revealed a population of stellar-mass black holes more massive than observed previously by other means. The maximum mass of black holes formed in isolated binaries is determined by stellar winds, mixing processes and interactions between the binary components. We consider the impact that fully self-consistent, detailed stellar-structure and binary-evolution calculations have on the population synthesis of black-hole binaries at solar metallicity. We find a qualitatively different picture from previous studies employing rapid population-synthesis techniques. Merging binary black holes form with a non-negligible rate ( \(\sim 4\times 1^\,_<\odot >^\) ) and their progenitor stars with initial masses ≳ 50 M do not expand to supergiant radii, thereby largely avoiding substantial dust-driven or luminous blue variable winds. The progenitor stars lose less mass in winds, which results in black holes as massive as ~30 M , and approximately half avoid a mass-transfer episode before forming the first-born black hole. Binaries with initial periods of a few days, some of which may undergo Roche-lobe overflow mass transfer, result in mildly spinning first-born black holes, χBH1 ≲ 0.2, assuming efficient angular-momentum transport.

This is a preview of subscription content, access via your institution

Access options

Access Nature and 54 other Nature Portfolio journals

Get Nature+, our best-value online-access subscription

cancel any time

Subscribe to this journal

Receive 12 digital issues and online access to articles

133,45 € per year

only 11,12 € per issue

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

Hierarchical mergers of stellar-mass black holes and their gravitational-wave signatures

Article 26 July 2021

A supra-massive population of stellar-mass black holes in the globular cluster Palomar 5

Article 05 July 2021

A small and vigorous black hole in the early Universe

Article Open access 17 January 2024

Data availability

The source and Supplementary Data used in the main manuscript and Supplementary Discussion are publicly available on Zenodo 65 . The dataset includes all single-stellar model variations discussed in the manuscript and the BBH population synthesis model that can be used to reproduce our results. Additionally, POSYDON v.1.0 single and binary grid datasets can be found on Zenodo 66 .

Code availability

The POSYDON v.1.0 software used to generate the BBH population synthesis and single-stellar models is open source and is available on GitHub 67 . Additionally, the software used to compute double compact object merger rates and to generate the intrinsic and detectable BBH observable distributions in Fig. 4 is available on GitHub 68 .

References

  1. Corral-Santana, J. M. et al. BlackCAT: a catalogue of stellar-mass black holes in X-ray transients. Astron. Astrophys.587, A61 (2016). Google Scholar
  2. Tetarenko, B. E., Sivakoff, G. R., Heinke, C. O. & Gladstone, J. C. WATCHDOG: a comprehensive all-sky database of galactic black hole X-ray binaries. Astrophys. J. Suppl. Ser.222, 15 (2016). ADSGoogle Scholar
  3. Abbott, B. P. et al. Observation of gravitational waves from a binary black hole merger. Phys. Rev. Lett.116, 061102 (2016). ADSMathSciNetGoogle Scholar
  4. Abbott, R. et al. GWTC-2.1: deep extended catalog of compact binary coalescences observed by LIGO and Virgo during the first half of the third observing run. Preprint at https://doi.org/10.48550/arXiv.2108.01045 (2021).
  5. Abbott, R. et al. GWTC-3: compact binary coalescences observed by LIGO and Virgo during the second part of the third observing run. Preprint at https://doi.org/10.48550/arXiv.2111.03606 (2021).
  6. Giesers, B. et al. A stellar census in globular clusters with MUSE: binaries in NGC 3201. Astron. Astrophys.632, A3 (2019). Google Scholar
  7. El-Badry, K. et al. A Sun-like star orbiting a black hole. Mon. Not. R. Astron. Soc.518, 1057–1085 (2023). ADSGoogle Scholar
  8. Miller-Jones, J. C. A. et al. Cygnus X-1 contains a 21-solar mass black hole—implications for massive star winds. Science371, 1046–1049 (2021). ADSGoogle Scholar
  9. Belczynski, K., Holz, D. E., Bulik, T. & O’Shaughnessy, R. The first gravitational-wave source from the isolated evolution of two stars in the 40-100 solar mass range. Nature534, 512–515 (2016). ADSGoogle Scholar
  10. Abbott, B. P. et al. Astrophysical Implications of the binary black-hole merger GW150914. Astrophys. J. Lett.818, L22 (2016). ADSGoogle Scholar
  11. Asplund, M., Grevesse, N., Sauval, A. J. & Scott, P. The chemical composition of the Sun. Annu. Rev. Astron. Astrophys.47, 481–522 (2009). ADSGoogle Scholar
  12. Vink, J. S., de Koter, A. & Lamers, H. J. G. L. M. Mass-loss predictions for O and B stars as a function of metallicity. Astron. Astrophys.369, 574–588 (2001). ADSGoogle Scholar
  13. Nugis, T. & Lamers, H. J. G. L. M. Mass-loss rates of Wolf–Rayet stars as a function of stellar parameters. Astron. Astrophys.360, 227–244 (2000). ADSGoogle Scholar
  14. Meynet, G., Maeder, A., Schaller, G., Schaerer, D. & Charbonnel, C. Grids of massive stars with high mass loss rates. V. From 12 to 120 M at Z=0.001, 0.004, 0.008, 0.020 and 0.040. Astron. Astrophys. Suppl.103, 97–105 (1994). ADSGoogle Scholar
  15. Smith, N. Mass loss: its effect on the evolution and fate of high-mass stars. Annu. Rev. Astron. Astrophys.52, 487–528 (2014). ADSGoogle Scholar
  16. Renzo, M., Ott, C. D., Shore, S. N. & de Mink, S. E. Systematic survey of the effects of wind mass loss algorithms on the evolution of single massive stars. Astron. Astrophys.603, A118 (2017). Google Scholar
  17. Belczynski, K. et al. The formation of a 70 M black hole at high metallicity. Astrophys. J.890, 113 (2020). ADSGoogle Scholar
  18. Vink, J. S. Theory and diagnostics of hot star mass loss. Annu. Rev. Astron. Astrophys.60, 203–246 (2022). ADSGoogle Scholar
  19. Chiosi, C. & Maeder, A. The evolution of massive stars with mass loss. Annu. Rev. Astron. Astrophys.24, 329–375 (1986). ADSGoogle Scholar
  20. Maeder, A. & Meynet, G. Grids of evolutionary models of massive stars with mass loss and overshooting – properties of Wolf-Rayet stars sensitive to overshooting. Astron. Astrophys.182, 243–263 (1987). ADSGoogle Scholar
  21. Hurley, J. R., Tout, C. A. & Pols, O. R. Evolution of binary stars and the effect of tides on binary populations. Mon. Not. R. Astron. Soc.329, 897–928 (2002). ADSGoogle Scholar
  22. Breivik, K. et al. COSMIC variance in binary population synthesis. Astrophys. J.898, 71 (2020). ADSGoogle Scholar
  23. Riley, J. et al. Rapid stellar and binary population synthesis with COMPAS. Astrophys. J. Suppl. Ser.258, 34 (2022). ADSGoogle Scholar
  24. Belczynski, K., Kalogera, V. & Bulik, T. A comprehensive study of binary compact objects as gravitational wave sources: evolutionary channels, rates, and physical properties. Astrophys. J.572, 407–431 (2002). ADSGoogle Scholar
  25. Hurley, J. R., Pols, O. R. & Tout, C. A. Comprehensive analytic formulae for stellar evolution as a function of mass and metallicity. Mon. Not. R. Astron. Soc.315, 543–569 (2000). ADSGoogle Scholar
  26. Pols, O. R., Schröder, K.-P., Hurley, J. R., Tout, C. A. & Eggleton, P. P. Stellar evolution models for Z = 0.0001 to 0.03. Mon. Not. R. Astron. Soc.298, 525–536 (1998). ADSGoogle Scholar
  27. Agrawal, P., Hurley, J., Stevenson, S., Szécsi, D. & Flynn, C. The fates of massive stars: exploring uncertainties in stellar evolution with METISSE. Mon. Not. R. Astron. Soc.497, 4549–4564 (2020). ADSGoogle Scholar
  28. Romagnolo, A. et al. The role of stellar expansion on the formation of gravitational wave sources. Preprint at https://doi.org/10.48550/arXiv.2211.15800 (2022).
  29. Paxton, B. et al. Modules for experiments in stellar astrophysics (MESA): pulsating variable stars, rotation, convective boundaries, and energy conservation. Astrophys. J. Suppl. Ser.243, 10 (2019). ADSGoogle Scholar
  30. Fragos, T. et al. POSYDON: a general-purpose population synthesis code with detailed binary-evolution simulations. Astrophys. J. Suppl. Ser.264, 45 (2023). ADSGoogle Scholar
  31. Dominik, M. et al. Double compact objects. II. Cosmological merger rates. Astrophys. J.779, 72 (2013). ADSGoogle Scholar
  32. Neijssel, C. J. et al. The effect of the metallicity-specific star formation history on double compact object mergers. Mon. Not. R. Astron. Soc.490, 3740–3759 (2019). ADSGoogle Scholar
  33. Broekgaarden, F. S. et al. Impact of massive binary star and cosmic evolution on gravitational wave observations - II. Double compact object rates and properties. Mon. Not. R. Astron. Soc.516, 5737–5761 (2022). ADSGoogle Scholar
  34. Ekström, S. et al. Grids of stellar models with rotation. I. Models from 0.8 to 120 M at solar metallicity (Z = 0.014). Astron. Astrophys.537, A146 (2012). Google Scholar
  35. Choi, J. et al. Mesa isochrones and stellar tracks (MIST). I. Solar-scaled models. Astrophys. J.823, 102 (2016). ADSGoogle Scholar
  36. Smith, N. Luminous blue variables and the fates of very massive stars. Philos. Trans. R. Soc. A375, 20160268 (2017). ADSGoogle Scholar
  37. Patton, R. A. & Sukhbold, T. Towards a realistic explosion landscape for binary population synthesis. Mon. Not. R. Astron. Soc.499, 2803–2816 (2020). ADSGoogle Scholar
  38. Dorozsmai, A. & Toonen, S. Importance of stable mass transfer and stellar winds for the formation of gravitational wave sources. Preprint at https://doi.org/10.48550/arXiv.2207.08837 (2022).
  39. van den Heuvel, E. P. J., Portegies Zwart, S. F. & de Mink, S. E. Forming short-period Wolf-Rayet X-ray binaries and double black holes through stable mass transfer. Mon. Not. R. Astron. Soc.471, 4256–4264 (2017). ADSGoogle Scholar
  40. Bavera, S. S. et al. The origin of spin in binary black holes. Predicting the distributions of the main observables of Advanced LIGO. Astron. Astrophys.635, A97 (2020). Google Scholar
  41. Bavera, S. S. et al. The impact of mass-transfer physics on the observable properties of field binary black hole populations. Astron. Astrophys.647, A153 (2021). Google Scholar
  42. Nelson, D. et al. The illustris simulation: public data release. Astron. Comput.13, 12–37 (2015). ADSGoogle Scholar
  43. Aasi, J. et al. Advanced LIGO. Class. Quantum Gravity32, 074001 (2015). ADSGoogle Scholar
  44. Bavera, S. S. et al. Probing the progenitors of spinning binary black-hole mergers with long gamma-ray bursts. Astron. Astrophys.657, L8 (2022). ADSGoogle Scholar
  45. Graham, J. F., Schady, P. & Fruchter, A. S. A surprising lack of LGRB metallicity evolution with redshift. Preprint at https://doi.org/10.48550/arXiv.1904.02673 (2019).
  46. Farr, W. M. et al. Distinguishing spin-aligned and isotropic black hole populations with gravitational waves. Nature548, 426–429 (2017). ADSGoogle Scholar
  47. Misra, D. et al. X-ray luminosity function of high-mass X-ray binaries: studying the signatures of different physical processes using detailed binary evolution calculations. Astron. Astrophys.672, A99 (2023). Google Scholar
  48. Rout, S. K., Vadawale, S., Garćia, J. & Connors, R. Revisiting the galactic Xray binary MAXI J1631-479: implications for high inclination and a massive black hole. Astrophys. J.944, 68 (2023). ADSGoogle Scholar
  49. Breivik, K., Chatterjee, S. & Larson, S. L. Revealing black holes with Gaia. Astrophys. J. Lett.850, L13 (2017). ADSGoogle Scholar
  50. Callister, T. A., Miller, S. J., Chatziioannou, K. & Farr, W. M. No vvidence that the majority of black holes in binaries have zero spin. Astrophys. J. Lett.937, L13 (2022). ADSGoogle Scholar
  51. Paxton, B. et al. Modules for experiments in stellar astrophysics (MESA). Astrophys. J. Suppl. Ser.192, 3 (2011). ADSGoogle Scholar
  52. Paxton, B. et al. Modules for experiments in stellar astrophysics (MESA): planets, oscillations, rotation, and massive stars. Astrophys. J. Suppl. Ser.208, 4 (2013). ADSGoogle Scholar
  53. Paxton, B. et al. Modules for experiments in stellar astrophysics (MESA): binaries, pulsations, and explosions. Astrophys. J. Suppl. Ser.220, 15 (2015). ADSGoogle Scholar
  54. Paxton, B. et al. Modules for experiments in stellar astrophysics (MESA): convective boundaries, element diffusion, and massive star explosions. Astrophys. J. Suppl. Ser.234, 34 (2018). ADSGoogle Scholar
  55. de Jager, C., Nieuwenhuijzen, H. & van der Hucht, K. A. Mass loss rates in the Hertzsprung-Russell diagram. Astron. Astrophys. Suppl.72, 259–289 (1988). ADSGoogle Scholar
  56. Humphreys, R. M. & Davidson, K. The luminous blue variables: astrophysical geysers. Publ. Astron. Soc. Pac.106, 1025 (1994). ADSGoogle Scholar
  57. Belczynski, K. et al. On the maximum mass of stellar black holes. Astrophys. J.714, 1217–1226 (2010). ADSGoogle Scholar
  58. Fryer, C. L. et al. Compact remnant mass function: dependence on the explosion mechanism and metallicity. Astrophys. J.749, 91 (2012). ADSGoogle Scholar
  59. Abbott, B. P. et al. Prospects for observing and localizing gravitational-wave transients with Advanced LIGO, Advanced Virgo and KAGRA. Living Rev. Relativ.21, 3 (2018). ADSGoogle Scholar
  60. Barrett, J. W. et al. Accuracy of inference on the physics of binary evolution from gravitational-wave observations. Mon. Not. R. Astron. Soc.477, 4685–4695 (2018). ADSGoogle Scholar
  61. Ng, K. K. Y. et al. Gravitational-wave astrophysics with effective-spin measurements: asymmetries and selection biases. Phys. Rev. D98, 083007 (2018). ADSGoogle Scholar
  62. LIGO Algorithm Library – LALSuite (LIGO Scientific Collaboration, 2018).
  63. Finn, L. S. & Chernoff, D. F. Observing binary inspiral in gravitational radiation: one interferometer. Phys. Rev. D47, 2198–2219 (1993). ADSGoogle Scholar
  64. Aasi, J. et al. Search of the Orion spur for continuous gravitational waves using a loosely coherent algorithm on data from LIGO interferometers. Phys. Rev. D93, 042006 (2016). ADSGoogle Scholar
  65. Bavera, S. S. Dataset associated to the publication NATASTRON- 22125961A arXiv:2212.10924. Zenodo https://doi.org/10.5281/zenodo.7965618 (2023).
  66. Fragos, T. Posydon data. Zenodohttps://doi.org/10.5281/zenodo.6655751 (2022).
  67. POSYDON Collaboration. Posydon. (GitHub, accessed 6 Febuary 2023) https://github.com/POSYDON-code/POSYDON
  68. Bavera, S. S. Binary black hole merger rates. (GitHub, accessed 24 May 2023) https://github.com/ssbvr/BBH_merger_rates
  69. Hunter, J. D. Matplotlib: a 2d graphics environment. Comput. Sci. Eng.9, 90–95 (2007). Google Scholar
  70. Price-Whelan, A. M. et al. The astropy project: building an open-science project and status of the v2. 0 core package. Astron. J.156, 123 (2018). ADSGoogle Scholar
  71. Pérez, F. & Granger, B. E. IPython: a system for interactive scientific computing. Comput. Sci. Eng.9, 21–29 (2007). Google Scholar
  72. Harris, C. R. et al. Array programming with NumPy. Nature585, 357–362 (2020). ADSGoogle Scholar
  73. pandas-dev/pandas: Pandas. Zenodo https://doi.org/10.5281/zenodo.7344967 (The pandas development team, 2022).
  74. Virtanen, P. et al. SciPy 1.0: fundamental algorithms for scientific computing in Python. Nat. Methods17, 261–272 (2020). Google Scholar

Acknowledgements

The POSYDON project is supported primarily by two sources: the Swiss National Science Foundation Professorship grant (PI Fragos, project numbers PP00P2_176868 and PP00P2_211006) and the Gordon and Betty Moore Foundation (PI Kalogera, grant award GBMF8477). S.S.B., T.F., D.M. and E.Z. were supported by the project PP00P2_176868 and S.S.B., T.F., M.K. and Z.X. were supported by the project number PP00P2_211006. Z.X. was also supported by the Chinese Scholarship Council (CSC). E.Z. acknowledges funding support from the European Research Council (ERC) under the European Union’s Horizon 2020 research and innovation programme (Grant agreement No. 772086). V.K., A.D., K.A.R., P.M.S. and M.S. were supported by the project number GBMF8477. C.P.L.B. acknowledges support from the University of Glasgow. K.K. acknowledges support from the Federal Commission for Scholarships for Foreign Students for the Swiss Government Excellence Scholarship (ESKAS no. 2021.0277) and the Spanish State Research Agency, through the María de Maeztu Program for Centers and Units of Excellence in R&D, no. CEX2020-001058-M. K.A.R. also thanks the LSSTC Data Science Fellowship Program, funded by LSSTC, NSF Cybertraining grant no. 1829740, the Brinson Foundation and the Moore Foundation; their participation in the programme has benefited this work. The computations were performed at Northwestern University on the Trident computer cluster (funded by the GBMF8477 award) and at the University of Geneva on the Yggdrasil computer cluster. This research was partly supported by the computational resources and staff contributions provided for the Quest high-performance computing facility at Northwestern University, jointly supported by the Office of the Provost, the Office for Research and Northwestern University Information Technology. All figures were made with the open-source Python module Matplotlib 69 . This research used the Python modules Astropy 70 , iPython 71 , Numpy 72 , Pandas 73 and SciPy 74 .

Author information

Authors and Affiliations

  1. Département d’Astronomie, Université de Genève, Versoix, Switzerland Simone S. Bavera, Tassos Fragos, Matthias Kruckow, Konstantinos Kovlakas, Devina Misra & Zepei Xing
  2. Gravitational Wave Science Center (GWSC), Université de Genève, Geneva, Switzerland Simone S. Bavera, Tassos Fragos, Matthias Kruckow & Zepei Xing
  3. IAASARS, National Observatory of Athens, Vas. Pavlou and I. Metaxa, Penteli, Greece Emmanouil Zapartas
  4. Department of Physics, University of Florida, Gainesville, FL, USA Jeff J. Andrews
  5. Center for Interdisciplinary Exploration and Research in Astrophysics (CIERA), Northwestern University, Evanston, IL, USA Vicky Kalogera, Aaron Dotter, Kyle A. Rocha, Philipp M. Srivastava & Meng Sun
  6. Department of Physics and Astronomy, Northwestern University, Evanston, IL, US Vicky Kalogera & Kyle A. Rocha
  7. SUPA, School of Physics and Astronomy, University of Glasgow, Glasgow, UK Christopher P. L. Berry
  8. Institute of Space Sciences (ICE, CSIC), Campus UAB, Carrer de Magrans, Barcelona, Spain Konstantinos Kovlakas
  9. Institut d’Estudis Espacials de Catalunya (IEEC), Barcelona, Spain Konstantinos Kovlakas
  10. Institutt for Fysikk, Norwegian University of Science and Technology, Trondheim, Norway Devina Misra
  11. Electrical and Computer Engineering, Northwestern University, Evanston, IL, USA Philipp M. Srivastava
  1. Simone S. Bavera